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Limited Dependent Variable Models 
and Sample Selection

Chapter 17
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Limited Dependent Variable Models

• Broadly defined as a dependent variable whose range 

of values is substantively restricted

• Dependent variable is qualitative (qualitative response 

or discrete choice models) or limited in their range
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Limited Dependent Variable Models (cont)

• Binary variable takes on only two values, zero and one

• Generally discrete response variables - y takes on a small 

number of integer values (the number of times a young man is 

arrested during a year, or the number of children born to a 

woman or “choice” between multiple, more than two 

outcomes – being full time/part time employed or unemployed, 

payment method or travel mode choice)
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Limited Dependent Variable Models (cont)

• Truncation occurs when sample data are drawn from a subset of a 

larger population of interest (studies of income based on incomes 

above or below some poverty line may be of limited usefulness for 

inference about the whole population)

• Censoring - suppose that instead of being unobserved, all incomes 

below the poverty line are reported as if they were at the poverty 

line (introduces a distortion into conventional statistical results 

that is like that of truncation)

• However, censoring is essentially a defect in the sample data



5

Multiple Regression Analysis

•  y = 0 + 1x1 + 2x2 + . . . kxk + u

• Dummy Variables (Ch 7)
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Dummy Variables

• A dummy variable is a variable that takes on the value 1 or 0

• Examples:  male (= 1 if are male, 0 otherwise), south (= 1 if in the 
south, 0 otherwise), etc.

• Dummy variables are also called binary variables, for obvious reasons

• Dummy variable trap (number of categories minus one)
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A Dummy Independent Variable

•  Consider a simple model with one continuous variable (x) and one 
dummy (d) 

•  y = 0 + 0d + 1x + u

•  This can be interpreted as an intercept shift (and/or slope shift)

•  If d = 0, then y = 0 + 1x + u

•  If d = 1, then y = (0 + 0) + 1x + u

•  The case of d = 0 is the base group or benchmark group
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Example of 0 > 0

x

y

{0

}0

y = (0 + 0) + 1x

y = 0 + 1x

slope = 1

d = 0

d = 1
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Linear Probability Model

•  P(y = 1|x) = E(y|x), when y is a binary variable, so we can write our 
model as: 

                               P(y = 1|x) = 0 + 1x1 + … + kxk

• So, the interpretation of j is the change in the probability of success 
when xj changes

•  The predicted y is the predicted probability of success or outcome 1 
(Y=1)

•  Potential problem that can be outside [0,1]
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Linear Probability Model (cont)

• Even without predictions outside of [0,1], we may estimate effects 
that imply a change in x changes the probability by more than +1 or –
1, so best to use changes near mean

•  This model will violate assumption of homoskedasticity, so will affect 
inference

• LPM produces both nonsense probabilities and negative variances

•  Despite drawbacks, it’s usually a good place to start when y is binary



LPM and nonlinear specifications

• Shortcomings of the LPM

• Major flaw: linear change in the probability that Y=1 associated with a unit 
change in X

• As regressions with a binary dependent variable Y models the probability 
that Y=1, it make sense to adopt a nonlinear formulation (predicted values 
are forced to be between 0-1) – prob. is S- shaped function of X



Application1: Bank decision on the 
mortgage applications 

• Source: J. Stock and M. Watson, Introduction to 
Econometrics, Addison Wesley, Pearson International 
Edition, 2003

• HMDA data (Home Mortgage Disclosure Act) - Cross-
sectional data, mortgage applications made in 1990 in the 
greater Boston metropolitan area using a subset of the 
original dataset (N=2380)



Application1: Bank decision on the mortgage applications 
(cont)
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Limited Dependent Variables

• P(y = 1|x) = G(0 + x),  where G is a function: 0 < 

G(z)<1

• Various nonlinear functions have been suggested for the 

function G 

• The two are used in the vast majority of applications 

(logit and probit)



The Logit Model

• One common choice for G(z) is the logistic function, which is the cdf 
for a standard logistic random variable

•  G(z) = p = exp(z)/[1 + exp(z)] = (z),

where z is linear function of the explanatory variables. 

•  This case is referred to as a logit model, or sometimes as a logistic 
regression (odds ratio of p and (1-p)): 𝑝

1 − 𝑝
= 𝑒𝑧 = 𝑒𝑋β
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The Probit Model

•  Another choice for G(z) is the standard normal cumulative distribution 
function (cdf)

•  G(z) = ∫g(z)dz, where g(z) is the standard normal, so g(z) = (2)-1/2exp(-z2/2), 
or:

•  

• This case is referred to as a probit model

Pr 𝑜 𝑏 𝑌) = 1 = ∞−

𝛽′𝑥 1

2𝜋
exp − Τ𝑧2 2 𝑑𝑧 = ∞−

𝛽′𝑥
g 𝑧 𝑑𝑧= F(z)=Φ(z)
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Logit and Probit Model

• Both functions have similar shapes – they are increasing in z, most 
quickly around 0

•  Since it is a nonlinear model, it cannot be estimated by our usual 
methods

•  Use maximum likelihood estimation (MLE)



Two cumulative distribution functions

0

1

p

Probit
Logit
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• Two nonlinear models can be derived from an underlying latent 

variable model

• Let y* be an unobserved, or latent, variable, and suppose that:

                  y* = 0 + x + e, y = 1 y∗ > 0

    where we introduce the notation 1 . to define a binary outcome

• The function 1 .  is called the indicator function, which takes 

on the value one if the event in brackets is true, and zero 

otherwise.

Alternative definition of logit and 
probit model 
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Latent Variables
• The idea is that there is an underlying variable y*, that can be modeled as:

 y* = 0 +x + e, 

but we only observe y = 1, if y* > 0, and y =0 if y* ≤ 0

• We assume that e is independent of x and that e has either the standard logistic 
distribution or the standard normal distribution (logit or probit model)

• In other case, e is symmetrically distributed around zero, which means that 1-G(-
z)=G(z) for all real number z

• The latent variable formulation tends to give the impression that we are primarily 
interested in the effects of each 𝑥𝑗  on y*



Binary Dependent Variable Models (summary)

• LPM: Pr ( Y=1| X1, X2, …, Xk) = β0 + β1X1 + β2X2 +…+ βkXk

• Probit Model: Pr ( Y=1| X) = Φ(β0 + β1X1 + β2X2 +…+ βkXk)

• Logit Model: Pr ( Y=1| X) = Λ(β0 + β1X1 + β2X2 +…+ βkXk) =

or 

Logistic regression: 

                                                      

=
1

1 + 𝑒− (𝛽0+𝛽1𝑥1+...+𝛽𝑘𝑥𝑘)

𝑝

1 − 𝑝
= 𝑒𝑋β
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Probits and Logits

•  Both the probit and logit are nonlinear and require maximum 
likelihood estimation (more on fundamentals is forthcoming)

•  No real reason to prefer one over the other

•  Traditionally saw more of the logit, mainly because the logistic 
function leads to a more easily computed model

•  Today, probit is easy to compute with standard packages, so more 
popular
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Interpretation of Probit and Logit 
(vs LPM)

•  In general, we care about the effect of x on P(y = 1|x), that is, we care about 
∂p/ ∂x

•  For the linear case, this is easily computed as the coefficient on x

• To find the partial effect of roughly continuous variables on the response 
probability, we must rely on calculus

•  For the nonlinear probit and logit models, it’s more complicated:

                              ∂p/ ∂xj = g(0 +x) j, where g(z)= dG/dz

• e.g., if G(z) is the cumulative standardized normal distribution (cdf), its 
derivative, is just the standardized normal distribution itself (pdf)



To calculate marginal effect of X on G (z)  we can calculate the differential directly, but also 

by breaking it up into two stages (G is function of Z, and Z is a function of X) – very useful if 

Z is a function of more than one variable. Marginal effect varies with X

BINARY CHOICE MODELS: LOGIT ANALYSIS

𝜕𝐺

𝜕𝑋
=

𝑑𝐺

𝑑𝑍

𝜕𝑍

𝜕𝑋
= 𝑔 𝑍 𝛽1 =

𝑒−𝑍

1 + 𝑒−𝑍 2
𝛽1

𝑝𝑖 = 𝐺 𝑍𝑖 =
1

1 + 𝑒−𝛽0−𝛽1𝑋𝑖

𝑝 = 𝐺(Z) =Λ 𝑍 =
1

1 + 𝑒−𝑍

𝑔 𝑍 =
d𝐺

d𝑍
=

𝑒−𝑍

1 + 𝑒−𝑍 2



We apply the rule to the expression for G(Z)/p

BINARY CHOICE MODELS: LOGIT ANALYSIS

𝒑 = 𝑮 𝒁 =
𝟏

𝟏 + 𝒆−𝒁
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We will do this theoretically for the general case where Z is a function of several explanatory 

variables. The marginal effect is not constant because it depends on the value of Z, which in 

turn depends on the values of the explanatory variables.  A common procedure is to evaluate it 

for the sample means of the explanatory variables.

BINARY CHOICE MODELS: LOGIT ANALYSIS

𝑍 = 𝛽𝑜 + 𝛽1𝑋1 + 𝛽2𝑋2+. . . 𝛽𝑘𝑋𝑘

𝑝 = 𝐺 𝑍 =
1

1 + 𝑒−𝑍

𝜕𝐺

𝜕𝑋𝑗
=

d𝐺

d𝑍

𝜕𝑍

𝜕𝑋𝑗
= 𝑔 𝑍 𝛽𝑗 =

𝑒−𝑍

1 + 𝑒−𝑍 2
𝛽𝑗

𝑔 𝑍 =
d𝐺

d𝑍
=

𝑒−𝑍

1 + 𝑒−𝑍 2



The marginal effect of Xj on G (p) can be written as the product of the marginal effect of Z on G and 
the marginal effect of Xj on Z. The marginal effect of Z on G is given by the standardized normal 
distribution.  The marginal effect of Xj on Z is given by j.

BINARY CHOICE MODELS: PROBIT ANALYSIS

𝑝 = 𝐺 𝑍

𝑍 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2+. . . 𝛽𝑘𝑋𝑘

𝜕𝐺

𝜕𝑋𝑗
=

d𝐺

d𝑍

𝜕𝑍

𝜕𝑋𝑗
= 𝑔 𝑍 𝛽𝑗 =

1

2𝜋
𝑒−

1
2𝑍2

𝛽𝑗

𝑔 𝑍 =
d𝐺

d𝑍
=

1

2𝜋
𝑒−

1
2𝑍2

As with logit analysis, the marginal effects vary with Z.  A common procedure is to evaluate them for 
the value of Z given by the sample means of the explanatory variables.
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Interpretation (continued)

•  Clear that it’s incorrect to just compare the coefficients across the three 
models

•  Can compare sign and significance (based on a standard z test) of 
coefficients, though

•  To compare the magnitude of effects, need to calculate the partial 
derivatives, say at the means (partial effect at the average, PEA or 
average marginal effect, AME)

•  Stata will do this for you in the probit cases (both cases)



Marginal effect of binary/discrete explanatory variable
• The partial effect from change x1 from zero to one:

𝐺(𝛽0 + 𝛽1 ∗ 1 + 𝛽2𝑋2+. . . 𝛽𝑘𝑋𝑘) - 𝐺(𝛽0 + 𝛽1 ∗ 0 + 𝛽2𝑋2+. . . 𝛽𝑘𝑋𝑘) 

where x1 is binary explanatory variable (for example gender) and other 
explanatory variables are fixed (at their means)

• We can use a following difference for other kind of discrete variables:

𝐺(𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2+. . . 𝛽𝑘(𝐶𝑘+1)) - 𝐺(𝛽0 + 𝛽1 ∗ 1 + 𝛽2𝑋2+. . . 𝛽𝑘𝐶𝑘)

where Ck is a number of children or credit score rating



Some more on marginal effect

• It is straightforward to include standard functional forms among the explanatory 
variables. For example, in the model:

𝑃 𝑦 = 1 𝑧 = 𝐺(𝛽0 + 𝛽1𝑧1 + 𝛽2𝑧1
2 + 𝛽3log(𝑧2) + 𝛽3𝑧3)

• The partial effect from change z1 on 𝑃 𝑦 = 1 𝑧  is:

Τ 𝜕𝑃 𝑦 = 1 𝑧 𝜕𝑧1=𝑔 𝛽0 + 𝑥𝛽 𝛽1 + 2𝛽2𝑧1 , and

• The partial effect from change z2 on 𝑃 𝑦 = 1 𝑧  is:

Τ 𝜕𝑃 𝑦 = 1 𝑧 𝜕𝑧2=𝑔 𝛽0 + 𝑥𝛽 Τ𝛽3 𝑧2

where 𝑥𝛽 = 𝛽1𝑧1 + 𝛽2𝑧1
2 + 𝛽3log(𝑧2) + 𝛽3𝑧3



Coefficients from LPV, probit and logit  models

• Amemiya (1981) suggested the following relation between probit and 
logit:

βprobit ≈  0.625 βlogit

• For the LPM and logit:

β LPV ≈ 0.25 β logit (except for the intercept)

                          β LPV ≈ 0.25 β logit +  0.5 (for the intercept)

                        



                                                                              
       _cons    -.1639722   .0267191    -6.14   0.000    -.2163674    -.111577
       ccred     .0427313   .0049558     8.62   0.000     .0330132    .0524494
       black     .1331286   .0241857     5.50   0.000     .0857013    .1805559
      pi_rat     .5269488   .0814237     6.47   0.000     .3672799    .6866177
                                                                              
        deny        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                             Robust
                                                                              

                                                Root MSE          =     .30454
                                                R-squared         =     0.1216
                                                Prob > F          =     0.0000
                                                F(3, 2376)        =      59.63
Linear regression                               Number of obs     =      2,380

Application1: Bank decision on the mortgage applications 
(LPM)



                                                                              
       _cons    -4.849078   .3575018   -13.56   0.000    -5.549769   -4.148387
       ccred     .3402578   .0339427    10.02   0.000     .2737313    .4067842
       black     .9499233   .1556954     6.10   0.000     .6447659    1.255081
      pi_rat     5.133146   .9653946     5.32   0.000     3.241007    7.025285
                                                                              
        deny        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                             Robust
                                                                              

Log pseudolikelihood = -748.76597               Pseudo R2         =     0.1414
                                                Prob > chi2       =     0.0000
                                                Wald chi2(3)      =     199.24
Logistic regression                             Number of obs     =      2,380

Iteration 4:   log pseudolikelihood = -748.76597  
Iteration 3:   log pseudolikelihood = -748.76599  
Iteration 2:   log pseudolikelihood = -748.85275  
Iteration 1:   log pseudolikelihood = -771.44022  
Iteration 0:   log pseudolikelihood =  -872.0853  

Application1: Bank decision on the mortgage applications 
(logit)



We then calculate g(Z).

BINARY CHOICE MODELS: LOGIT ANALYSIS

Logit: Marginal Effects

                         mean            𝜷           product         

 pi_rat            0.330814      5.133146          1.6981 

 black              0.142437     0.9499233        0.1353 

 ccred              2.116387     0 .3402578       0.7201  

 constant 1.00     -4.849078        –4.8491

 Total   -2.2962

𝑒−𝑍 = 𝑒−2.2962 = 0.100495

𝑔 𝑍 =
𝑒−𝑍

1 + 𝑒−𝑍 2

= 0.082979



The estimated marginal effects are g(Z) multiplied by the respective coefficients.  

𝜕𝐺

𝜕𝑋𝑖
=

d𝐺

d𝑍

𝜕𝑍

𝜕𝑋𝑖
= 𝑔 𝑍 𝛽𝑖

BINARY CHOICE MODELS: LOGIT ANALYSIS

Logit: Marginal Effects

                         mean            𝜷           product         g(Z)          g(Z) 𝜷 

 pi_rat            0.330814      5.133146           1.6981  0.082979     0.4295

 black              0.142437     0.9499233         0.1353        0.082979     0.0788

 ccred              2.116387     0 .3402578        0.7201  0.082979     0.0282

 constant 1.00     -4.849078 -4.8491

 Total   -2.2962



                                                                              
       _cons     -2.65843   .1647258   -16.14   0.000    -2.981287   -2.335573
       ccred     .1880319   .0188506     9.97   0.000     .1510854    .2249784
       black     .5289367   .0870488     6.08   0.000     .3583241    .6995492
      pi_rat     2.642005   .4382521     6.03   0.000     1.783046    3.500963
                                                                              
        deny        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                             Robust
                                                                              

Log pseudolikelihood = -749.37101               Pseudo R2         =     0.1407
                                                Prob > chi2       =     0.0000
                                                Wald chi2(3)      =     204.11
Probit regression                               Number of obs     =      2,380

Application1: Bank decision on the mortgage applications 
(probit)



In this case Z is equal to -1.3112 when the X variables are equal to their sample means.

We then calculate g(Z).

BINARY CHOICE MODELS: PROBIT ANALYSIS

Probit: Marginal Effects

                         mean            𝜷 product

 pi_rat             0.330814 2.64201 0.8740

 black              0.142437 0.52894  0.0753

 ccred                2.116387 0.18803 0.3979

 constant 1.00 -2.65843 –2.6584

 Total   -1.3112

𝑔 𝑍 =
1

2𝜋
𝑒−

1
2𝑍2

= 0.169147

𝑍 = 𝛽1 + 𝛽2
ሜ𝑋2+. . . 𝛽𝑘

ሜ𝑋𝑘

= −1.3112



The estimated marginal effects are g(Z) multiplied by the respective coefficients. 

BINARY CHOICE MODELS: PROBIT ANALYSIS

𝜕𝐺

𝜕𝑋𝑖
=

d𝐺

d𝑍

𝜕𝑍

𝜕𝑋𝑖
= 𝑔 𝑍 𝛽𝑖

Probit: Marginal Effects

                         mean            𝜷 product             g(Z)                g(Z) 𝜷           

 pi_rat             0.330814 2.64201 0.8740             0.1691               0.4468

 black              0.142437 0.52894  0.0753             0.1691               0.0894

 ccred                2.116387 0.18803 0.3979             0.1691               0.0318

 constant 1.00 -2.65843 –2.6584             0.1691

 Total   -1.3112



The logit and probit results are displayed for comparison.  The coefficients in the regressions 
are very different because different mathematical functions are being fitted. Nevertheless, 
the estimates of the marginal effects are usually similar. 

BINARY CHOICE MODELS: LOGIT AND PROBIT ANALYSIS

Logit          Probit

                                                       g(Z) 𝜷          g(Z) 𝜷 

 pi_rat  0.4295  0.4468

 black                  0.0788           0.0894

 ccred  0.0282  0.0318

However, if the outcomes in the sample are divided between a large majority and a small 
minority, they can differ. This is because the observations are then concentrated in a tail of 
the distribution.  Although the logit and probit functions share the same sigmoid outline, 
their tails are somewhat different.



    z and P>|z| correspond to the test of the underlying coefficient being 0
(*) dF/dx is for discrete change of dummy variable from 0 to 1
                                                                              
 pred. P     .0949069  (at x-bar)
  obs. P     .1197479
                                                                              
   ccred     .0317579   .0032244     9.97   0.000   2.11639   .025438  .038078
   black*    .1127733     .02237     6.08   0.000   .142437   .068929  .156618
  pi_rat      .446225   .0725547     6.03   0.000   .330814    .30402   .58843
                                                                              
    deny        dF/dx   Std. Err.      z    P>|z|     x-bar  [    95% C.I.   ]
                         Robust
                                                                              

Application1: Marginal effects (probit, cont)



Application1: Marginal effects (probit, cont.)

• Prob(deny=1) = G(const, pi_rat, ccred, black)

• Means: 

For binary: 𝐺(𝛽0 + 𝜷𝟏 ∗ 𝟏 + 𝛽2𝑋2+. . . 𝛽𝑘𝑋𝑘) - 𝐺(𝛽0 + 𝜷𝟏 ∗ 𝟎 + 𝛽2𝑋2+. . . 𝛽𝑘𝑋𝑘) 

• G (pi_rat = 0.330814, black =0 , ccred=2.116387) =Φ −2.66 + 2.64 ∗ 0.33 + 0.53 ∗ 0 + 0.19 ∗ 2.12  
=Φ −1.386 = 1 − Φ 1.386  = 0.0823

G (pi_rat = 0.330814, black =1 , ccred=2.116387) =Φ −2.66 + 2.64 ∗ 0.33 + 0.53 ∗ 1 + 0.19 ∗ 2.12  
=Φ −0.856 = 1 − Φ 0.856  = 0.1949

• For binary var. BLACK (marg. effect of black =0.1949-0.0823=0.1126)

variable pi_rat black ccred

mean 0.330814 0.142437 2.116387



Application1: Marginal effects (probit, cont.)

• Prob(deny=1) = G(const, pi_rat, ccred, black)

• Means: 

For discrete variable: 𝐺(𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2+. . . 𝜷𝒌(𝑪𝒌+𝟏)) - 𝐺(𝛽0 + 𝛽1 ∗ 1 + 𝛽2𝑋2+. . . 𝜷𝒌𝑪𝒌)

• G (pi_rat = 0.330814, black =0 , ccred=2) =Φ −2.66 + 2.64 ∗ 0.33 + 0.53 ∗ 0 + 0.19 ∗ 2  
=Φ −1.409 = 1 − Φ 1.409  = 0.0681

G (pi_rat = 0.330814, black =0, ccred=3) =Φ −2.66 + 2.64 ∗ 0.33 + 0.53 ∗ 0 + 0.19 ∗ 3  
=Φ −1.219 = 1 − Φ 1.219  = 0.1112

• For discrete var. CCRED (marg. effect of score declining from 2 to 3=0.1112-0.0881=0.0431)

variable pi_rat black ccred

mean 0.330814 0.142437 2.116387









This sequence introduces the principle of maximum likelihood estimation and illustrates it 

with some simple examples. Suppose that you have a normally-distributed random variable 

X with unknown population mean  and standard deviation , and that you have a sample of 
two observations, 4 and 6.  For the time being, we will assume that  is equal to 1.
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INTRODUCTION TO MAXIMUM LIKELIHOOD ESTIMATION
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We want to obtain an estimate of  Suppose initially you consider the hypothesis  = 3.5.  

Under this hypothesis the probability density at 4 would be 0.3521 and that at 6 would be 
0.0175.
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 p(4)       p(6)
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The joint probability density, shown in the bottom chart, is the product of these, 0.0062.
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 3.5 0.3521 0.0175 0.0062



Next consider the hypothesis  = 4.0.  Under this hypothesis the probability densities 

associated with the two observations are 0.3989 and 0.0540, and the joint probability 

density is 0.0215.
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 4.0 0.3989 0.0540 0.0215



Under the hypothesis  = 4.5, the probability densities are 0.3521 and 0.1295, and the joint 

probability density is 0.0456.
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 p(4)       p(6)         L

 3.5 0.3521 0.0175 0.0062
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Under the hypothesis  = 5.0, the probability densities are both 0.2420 and the joint 

probability density is 0.0585.
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Under the hypothesis  = 5.5, the probability densities are 0.1295 and 0.3521 and the joint 
probability density is 0.0456.
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L

 p(4)       p(6)         L

 3.5 0.3521 0.0175 0.0062

 4.0 0.3989 0.0540 0.0215

 4.5 0.3521 0.1295 0.0456

 5.0 0.2420 0.2420 0.0585

 5.5 0.1295 0.3521 0.0456



The complete joint density function for all values of  has now been plotted in the lower 

diagram.  We see that it peaks at  = 5. MLE of  is defined as value that maximizes the 

likelihood function given the sample data. 
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Now we will look at the mathematics of the example.  If X is normally distributed with mean 

 and standard deviation , its density function is as shown.
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For the time being, we are assuming  is equal to 1, so the density function simplifies to the 

second expression.
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Hence, we obtain the probability densities for the observations where X = 4 and X = 6.
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The joint probability density for the two observations in the sample is just the product of 

their individual densities.
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In maximum likelihood estimation we choose as our estimate of  the value that gives us the 

greatest joint density for the observations in our sample.  This value is associated with the 
greatest probability, or maximum likelihood, of obtaining the observations in the sample.
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In the graphical treatment we saw that this occurs when  is equal to 5.  We will prove this 
must be the case mathematically.
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To do this, we treat the sample values X = 4 and X = 6 as given and we use the calculus to 
determine the value of  that maximizes the expression.
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When it is regarded in this way, the expression is called the likelihood function for  given 
the sample observations 4 and 6. This is the meaning of L( | 4,6).
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To maximize the expression, we could differentiate with respect to  and set the result equal 
to 0.  This would be a little laborious.  Fortunately, we can simplify the problem with a trick.
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log L is a monotonically increasing function of L (meaning that log L increases if L 
increases and decreases if L decreases).
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It follows that the value of  which maximizes log L is the same as the one that maximizes L.  
As it so happens, it is easier to maximize log L with respect to  than it is to maximize L.
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The logarithm of the product of the density functions can be decomposed as the sum of 

their logarithms. Using the product rule a second time, we can decompose each term as 
shown.
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Hence the second term reduces to a simple quadratic in X.  And so does the fourth.
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We will now choose  so as to maximize this expression.
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Quadratic terms of the type in the expression can be expanded as shown.

Thus, we obtain the differential of the quadratic term.
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Applying this result, we obtain the differential of log L with respect to .  (The first term in 
the expression for log L disappears completely since it is not a function of .)

INTRODUCTION TO MAXIMUM LIKELIHOOD ESTIMATION

( ) ( )22
6

2

1
4

2

1

2

1
log2log 


−−−−








=L

( ) ( ) 22222

2

1

2

1
2

2

1

2

1
 −+−=+−−=−− aaaaa

( ) 


−=








−− aa
2

2

1

d

d

( ) ( )


−+−= 64
d

logd L



Thus, from the first order condition we confirm that 5 is the value of  that maximizes the 
log-likelihood function, and hence the likelihood function. 

INTRODUCTION TO MAXIMUM LIKELIHOOD ESTIMATION

( ) ( )22
6

2

1
4

2

1

2

1
log2log 


−−−−








=L

( ) ( ) 22222

2

1

2

1
2

2

1

2

1
 −+−=+−−=−− aaaaa

( ) 


−=








−− aa
2

2

1

d

d

( ) ( )


−+−= 64
d

logd L

5ˆ0
d

logd
== 



L



Note also that the second differential of log L with respect to  is –2.  Since this is negative, 

we have found a maximum, not a minimum.
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Maximum Likelihood Estimation of Logit and Probit 
Models
•  MLE is based on the distribution on given x, the heteroscedasticity in 𝑉𝑎𝑟 𝑦 𝑥  is 

automatically accounted for

• To obtain the maximum likelihood estimator, conditional on the explanatory variables, 
we need the density of 𝑦𝑖 given 𝑥𝑖  (n-sample size). We can write this as:

 𝑓 𝑦𝑖 𝑥𝑖; 𝛽 =  [G(xi 𝛽)]𝑦𝑖 [1 – G(xi 𝛽 )]1-yi ,   y=0,1

• The log-likelihood function for observation i can be obtained: 

                                                 𝑙𝑖 𝛽 =𝑦𝑖𝑙𝑜𝑔 G(xi 𝛽 +(1- 𝑦𝑖)log 1 − G(xi 𝛽)

• Because 𝐺 .  is strictly between zero and one for logit and probit, 𝑙𝑖 𝛽   is well 
defined for all values of 𝛽
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Maximum Likelihood Estimation of Logit and Probit Models, cont.

•  The log-likelihood for a sample size n is obtained by summing log-likelihood of all n observations:

• The MLE of β, denoted as መ𝛽 maximizes this log-likelihood  (it is easy to show that: ∂L(x; β) / ∂β = 
0,   ∂2L(x; β) / ∂β ∂β’ < 0)

• The general theory of MLE for random samples implies that, under very general conditions, the 
MLE is consistent, asymptotically normal, and asymptotically efficient. We will just use the 
results here

• Each መ𝛽𝑗 comes with an (asymptotic) standard error, the formula for which is complicated and 

presented in the chapter appendix. We form the t (z) statistic and carry out the test in the usual way, 
once we have decided on a one- or two-sided alternative

log 𝐿𝑛 = log 𝐿𝑛 𝑥; 𝛽 = ℒ 𝛽 = 

𝑖=1

𝑛

𝑙𝑖 𝛽 = 

𝑖=1

𝑛

𝑦𝑖 log G(xi 𝛽 + 1 − 𝑦𝑖 log 1 − G(xi 𝛽)
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The Likelihood Ratio Test (Testing Multiple Hypothesis)

•  Unlike the LPM, where we can compute F statistics or LM 
statistics to test exclusion restrictions, we need a new type of 
test

•  Maximum likelihood estimation (MLE), will always produce 
a log-likelihood, L

•  Just as in an F test, you estimate the restricted and 
unrestricted model, then form

•  LR = 2(Lur – Lr) ~ χ2
q (q number of restrictions)



                                                                              
       _cons     -2.65843   .1647258   -16.14   0.000    -2.981287   -2.335573
       ccred     .1880319   .0188506     9.97   0.000     .1510854    .2249784
       black     .5289367   .0870488     6.08   0.000     .3583241    .6995492
      pi_rat     2.642005   .4382521     6.03   0.000     1.783046    3.500963
                                                                              
        deny        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                             Robust
                                                                              

Log pseudolikelihood = -749.37101               Pseudo R2         =     0.1407
                                                Prob > chi2       =     0.0000
                                                Wald chi2(3)      =     204.11
Probit regression                               Number of obs     =      2,380

Application1: Bank decision on the mortgage applications 
(probit, unrestricted)



Application1: Bank decision on the mortgage applications 
(probit, restricted)

. 

                                                                              
       _cons    -1.176248   .0333247   -35.30   0.000    -1.241563   -1.110933
                                                                              
        deny        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                             Robust
                                                                              

Log pseudolikelihood =  -872.0853               Pseudo R2         =     0.0000
                                                Prob > chi2       =          .
                                                Wald chi2(0)      =          .
Probit regression                               Number of obs     =      2,380

LR statistic 245.4285

Prob(LR statistic) 0.0000
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Goodness of Fit

•  Unlike the LPM, where we can compute an R2 to judge goodness of 
fit, we need new measures of goodness of fit

•  One possibility is a pseudo R2 based on the log likelihood and 
defined as 1 – Lur/Lr

•  Can also look at the percent correctly predicted – if predict a 
probability >0.5 then that matches y = 1 and vice versa



Application1: Bank decision on the mortgage applications - 
Percent correctly predicted from probit 

                                                  
Correctly classified                        87.98%
                                                  
False - rate for classified -   Pr( D| -)   11.16%
False + rate for classified +   Pr(~D| +)   50.98%
False - rate for true D         Pr( -| D)   91.23%
False + rate for true ~D        Pr( +|~D)    1.24%
                                                  
Negative predictive value       Pr(~D| -)   88.84%
Positive predictive value       Pr( D| +)   49.02%
Specificity                     Pr( -|~D)   98.76%
Sensitivity                     Pr( +| D)    8.77%
                                                  
True D defined as deny != 0
Classified + if predicted Pr(D) >= .5

   Total           285          2095          2380
                                                  
     -             260          2069          2329
     +              25            26            51
                                                  
Classified           D            ~D         Total
                       True         



Application1: Bank decision on the mortgage applications – 
Behind the percent correctly predicted from probit 

no. obs. deny predictions true of not

1 1 0.8299 yes

2 0 0.8189 no

3 1 0.7239 yes

4 0 0.7210 no

5 1 0.5744 yes

6 1 0.5640 yes

7 0 0.5616 no

8 1 0.5536 yes

9 1 0.5438 yes

10 0 0.4431 yes

11 0 0.4392 yes

12 1 0.5326 yes

13 0 0.5316 no

14 1 0.4905 no

15 0 0.4893 yes



Application 2: MROZ data (married women LFP, Y=inlf – in labor 
force or not)



Application 2: MROZ data (married women LFP)



Application 2: MROZ data (married women LFP)
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