Faculty of Economics, University of Belgrade IMQF studies Year: 2021/2022 Professor: Zorica Mladenović and Aleksandra Nojković

Time allowed: 150 minutes Total marks: 100

Exam in Intermediate Econometrics (Test 1, 50 marks) Date: February/2022

1. Consider the simple linear regression model:

$$y_i = \beta_1 + \beta_2 x_{i2} + \varepsilon_i$$
, $i = 1, 2, ..., n$.

under classical linear regression model assumptions (Gauss-Markov assumptions).

- a) Discuss whether the OLS estimator for the slope β_2 is unbiased (you are not asked to derive OLS estimator).
- Presentation 2/Slides 31 and 32

Under assumptions A(1) and A(2) OLS an estimator is unbiased: $E(b)=\beta$.

A(1): Error terms have mean zero $E(\varepsilon_i) = 0$. A(2): All error terms are independent of all X variables: $\{\varepsilon_1, ..., \varepsilon_N\}$ is independent of $\{x_1, ..., x_N\}$.

(2 marks)

- b) Derive OLS estimator for a simple linear model by assuming that the intercept is zero.
- Similar (simpler model) to Presentation 2/Slide 14

$$SS = \sum_{i=1}^{N} (Y_i - b_2 X_i)^2$$

$$\frac{\partial SS}{\partial b_2} = \sum_{i=1}^N 2(Y_i - b_2 X_i)(-X_i) = 0 \Rightarrow b_2 = \frac{\sum_{i=1}^N X_i Y_i}{\sum_{i=1}^N X_i^2}.$$

(2 marks)

2. An economist is interested in estimating the production function defined by Cobb-Douglas specification:

$$Y = \beta_1 L^{\beta_L} K^{\beta_K} e^{\varepsilon}$$

where Y is production, L is labour, K is capital stock and ε is error term.

- a) Provide the interpretation of the parameter β_L . Explain your answer.
- Similar to Presentation 2/Slides 72 and 73

 $\frac{dlnY}{dlnX} = \frac{\%changeY}{\%changeX} = Elasticity of Y wrt change in X$

An elasticity measures the *relative* change in the dependent variable y_i due to a *relative* change in x_{ik} .

(2 marks)

- b) There is a suspect that the errors exhibit heteroscedasticity. Explain what should be considered by the concept of heteroscedasticity. Enhance your answer with the help of a graphical illustration.
- Presentation 3/Slides 7-9

Heteroskedasticity arises if different error terms do not have the same variance. When do we expect this?

- Variances depend upon one or more explanatory variables (e.g., firm size);
- Variances evolve over time (time-varying volatility);

Similar to the below illustrations:

(2 marks)

3. The following output on log of wages (*lnwage*) was obtained using LFS data on 1462 women:

Date: 02/26/22 Time: 13:02 Sample (adjusted): 3 4375 Included observations: 1462 after adjustments							
Variable	Coefficient	Std. Error	t-Statistic	Prob.			
C AGE EXPERIENCE EDUC OWN3 SERVICES AGRIC OWN3*SERVICES	7.237523 0.006016 0.004121 0.106554 0.223468 0.210678 -0.104414 -0.148638	$\begin{array}{c} 0.098671\\ 0.002468\\ 0.002443\\ 0.005467\\ 0.062584\\ 0.031693\\ 0.061120\\ 0.069677\end{array}$	73.34979 2.437506 1.686589 19.48904 3.570701 6.647469 -1.708355 -2.133234	0.0000 0.0149 0.0919 0.0000 0.0004 0.0000 0.0878 0.0331			
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.284168 0.280722 0.450623 295.2503 -905.0803 82.45772 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		9.029893 0.531330 1.249084 1.278017 1.259876 1.355271			

Dependent Variable: LNWAGE Method: Least Squares Data 02/26/22 The 12.00

where regressors in baseline model are:

experience – years of work experience; *age* – age in years; *educ* – number of years of full-time education; own3 - 1 if works in private sector, 0 otherwise; *agric* – 1 if works in agriculture, 0 otherwise; services – 1 if works in services, 0 otherwise; own3*services – interaction variable.

Note on all above requests: Clearly explain the null and alternative hypothesis, the test statistics, and rejection rule.

- a) Test the null hypothesis that the coefficient of *educ* is zero (at 5% significance level).
- Presentation 2 / Slides 61-63 •

 $H_0: b_{4(educ)} = 0$ $H_1: b_{4(educ)} \neq 0$

Corresponding prob. of t-stat. (0.000) \rightarrow We reject H₀.

- b) At the 5% significance level, test the joint significance of the regressors.
- Presentation 2 / Slides 48-47 and 64-66

$$H_0: R^2 = 0$$

 $H_1: R^2 \neq 0$

Corresponding prob. of F-stat. (0.000) \rightarrow We reject H₀.

(2 marks)

c) Is the return to age equal as to the return-to-work experience in our model (can we state that the coefficients of age and experience are equal)?

Wald Test: Equation: EQ01			
Test Statistic	Value	df	Probability
t-statistic F-statistic Chi-square	0.400139 0.160111 0.160111	1454 (1, 1454) 1	0.6891 0.6891 0.6891

Null Hypothesis: C(2)=C(3) Null Hypothesis Summary:

Normalized Restriction (= 0)	Value	Std. Err.
C(2) - C(3)	0.001895	0.004736

Restrictions are linear in coefficients.

• Presentation 2 / Slides 61-63

 $H_0: b_{2(age)} = b_{3(experiance)}$ $H_1: b_{2(age)} \neq b_{3(experiance)}$

Corresponding prob. of t-stat. (0.6891) \rightarrow We do not reject H₀.

(3 marks)

(2 marks)

d) Use the result below to test the joint significance of the dummy variables excluded from baseline model:

Dependent Variable: LNWAGE

Method: Least Squares							
Date: 02/26/22 Time: 13:29							
Sample (adjusted): 3	4375						
Included observation	s: 1462 after a	adjustments					
Variable	Coefficient	Std. Error	t-Statistic	Prob.			
С	7.352860	0.098281	74.81449	0.0000			
AGE	0.005707	0.002521	2.264253	0.0237			
EXPERIENCE	0.002597	0.002498	1.039854	0.2986			
EDUC	0.114371	0.005480	20.87117	0.0000			
R-squared	0.243266	Mean depen	dent var	9.029893			
Adjusted R-squared	0.241709	S.D. depend	ent var	0.531330			
S.E. of regression	0.462682	Akaike info	criterion	1.299179			
Sum squared resid	312.1208	Schwarz crit	terion	1.313645			
Log likelihood	-945.6995	Hannan-Qui	nn criter.	1.304575			
F-statistic	156.2337	Durbin-Wat	son stat	1.263129			
Prob(F-statistic)	0.000000						

Presentation 2 / Slide 81

•

 $H_0: b_5 = b_6 = b_7 = b_8 = 0$ $H_1: H_0$ is not true.

$$F = \frac{(R_1^2 - R_0^2)/J}{(1 - R_1^2)/(N - K)}$$
$$F = \frac{(0.284168 - 0.243266)/4}{(1 - 0.284168)/(1462 - 8)} = 20.56626 > F^* \rightarrow \text{We reject H}_0.$$

The set of dummy variables should not be excluded from baseline model.

(4 marks)

e) In order to test for general model misspecifications, we performed Ramsey's RESET test (we used two fitted terms). Is there a specification problem in our model?

Ramsey RESET Test Equation: EQ01 Omitted Variables: Powers of fitted values from 2 to 3 Specification: LNWAGE C AGE EXPERIENCE EDUC OWN3 SERVICES AGRIC OWN3*SERVICES

F-statistic	Value 9.843611	df (2, 1452)	Probability 0.0001
	19.68963	2	0.0001
F-test summary:			
	Sum of Sq.	df	Mean Squares
Test SSR	3.949656	2	1.974828
Restricted SSR	295.2503	1454	0.203061
Unrestricted SSR	291.3006	1452	0.200620
LR test summary:			
	Value		
Restricted LogL	-905.0803		_
Unrestricted LogL	-895.2354		

• Presentation 2 / Slides 75-79

H₀: Regression specification is correct. H_1 : H_0 is not true.

Corresponding prob. of F-stat. (0.0001) \rightarrow We reject H₀.

(3 marks)

f) Check for heteroskedasticity using result of the White test (no cross products/terms).

Heteroskedasticity T Null hypothesis: Hor	est: White moskedasticity	7		
F-statistic Obs*R-squared Scaled explained SS	5.098529 35.02632 94.99779	Prob. F(7,1- Prob. Chi-S Prob. Chi-S	$\begin{array}{c} 0.0000 \\ 0.0000 \\ 0.0000 \end{array}$	
Test Equation: Dependent Variable: Method: Least Squar Date: 02/26/22 Tim Sample: 3 4375 Included observation	RESID^2 res ne: 13:09 ns: 1462			
Variable	Coefficient	Std. Error	t-Statistic	Prob.
C AGE^2	0.360207 -1.87E-05	0.055371 2.87E-05	6.505354 -0.649112	0.0000 0.5164

EXPERIENCE^2	6.42E-05	6.71E-05	0.955705	0.3394
EDUC^2	-0.000163	0.000238	-0.685428	0.4932
OWN3^2	-0.152246	0.064998	-2.342301	0.0193
SERVICES^2	-0.174476	0.032976	-5.290958	0.0000
AGRIC^2	-0.016311	0.063524	-0.256773	0.7974
OWN3*SERVICES^				
2	0.201814	0.072499	2.783665	0.0054
R-squared	0.023958	Mean deper	ndent var	0.201950
Adjusted R-squared	0.019259	S.D. depend	lent var	0.473096
S.E. of regression	0.468518	Akaike info	criterion	1.326972
Sum squared resid	319.1662	Schwarz cri	terion	1.355906
Log likelihood	-962.0167	Hannan-Qu	inn criter.	1.337765
F-statistic	5.098529	Durbin-Watson stat		1.866338
Prob(E-statistic)				
riob(r statistic)	0.000010			

• Presentation 3 / Slides 27-29

H₀: Error terms are homoscedastic H₁: Error terms are heteroscedastic

WH - statistics = $1462*0.023958=35.02632 > F^*$ (corresponding prob. 0.000) \rightarrow We reject H₀.

(3 marks)

g) Check for normality of residuals in the regression model.

• Presentation 1 / Slides 34 and 96

A convenient fifth assumption is that all error terms have a normal distribution. We specify:

(A5):
$$\varepsilon_i \sim \text{NID}(0, \sigma^2)$$

Ho: Residuals have N distribution. H_1 : H_0 is not true.

JB = 865.25 (prob. 0.000) \rightarrow We reject H₀.

(4 marks)

- 4. Derive the approximative relation between Durbin-Watson (DW) test-statistic and autocorrelation coefficient of order one (ρ).
- Presentation 3 / Slides 48

$$dw pprox 2 - 2\hat{
ho}$$

$$dw = \frac{\sum_{t=2}^{n} (e_t - e_{t-1})^2}{\sum_{t=1}^{n} e_t^2}$$
$$dw = \frac{\sum_{t=2}^{n} (e_t - e_{t-1})^2}{\sum_{t=1}^{n} e_t^2} = \frac{\sum_{t=2}^{n} e_t^2 - 2\sum_{t=2}^{n} e_t e_{t-1} + \sum_{t=2}^{n} e_{t-1}^2}{\sum_{t=1}^{n} e_t^2},$$
$$\sum_{t=1}^{n} e_t^2 \approx \sum_{t=2}^{n} e_{t-1}^2 \to dw \approx 2\left(1 - \frac{\sum_{t=2}^{n} e_t e_{t-1}}{\sum_{t=1}^{n} e_t^2}\right) \to dw \approx 2(1 - \hat{\rho})$$

$$t=2$$
 $t=2$ (-1)

 $\hat{\rho}$ – estimated autocorrelation coefficient of order one.

(3 marks)

5. Consumers expenditure on food (*lcons*) are estimated based on quarterly data as follows:

Dependent Variable: LCONS Method: Least Squares Date: 02/26/22 Time: 13:35 Sample (adjusted): 1985Q2 1994Q2 Included observations: 37 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C LCONS(-1) LPRICE LDISP	-0.488356 0.818289 -0.120416 0.411340	0.575327 0.103707 0.086416 0.169728	-0.848831 7.890392 -1.393442 2.423524	0.4021 0.0000 0.1728 0.0210
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.758453 0.736494 0.026685 0.023500 83.69058 34.53976 0.000000	Mean depen S.D. depend Akaike info Schwarz cri Hannan-Qu Durbin-Wat	ndent var lent var criterion terion inn criter. tson stat	4.608665 0.051985 -4.307599 -4.133446 -4.246202 1.727455

where: *ldisp* = disposable income and *lprice* =the relative price index of food.

Then we estimated the auxiliary regression using residuals from the above regression as explanatory variable:

Test Equation: Dependent Variable: RESID Method: Least Squares Date: 02/26/22 Time: 13:47 Sample: 1985Q2 1994Q2 Included observations: 37 Presample missing value lagged residuals set to zero.

Variable	Coefficient	Std. Error	t-Statistic	Prob.	
C LCONS(-1) LPRICE LDISP RESID(-1)	0.153347 -0.054709 0.003521 0.018085 0.174392	0.607265 0.123515 0.086942 0.171957 0.211345	0.252521 -0.442932 0.040502 0.105171 0.825154	0.8023 0.6608 0.9679 0.9169 0.4154	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.020834 -0.101562 0.026815 0.023010 84.08009 0.170220 0.952013	Mean deper S.D. depend Akaike info Schwarz cri Hannan-Qu Durbin-Wat	adent var lent var criterion terion inn criter. cson stat	8.51E-16 0.025549 -4.274599 -4.056908 -4.197853 1.855257	

Using both of the above results, test for evidence of first-order autocorrelation. Clearly explain the null and alternative hypothesis, the test statistics, rejection rule and assumptions of underlying test. What is the name of the test that that you find adequate in this case?

• Presentation 3 / Slides 46-47

 H_0 : No autocorrelation of order one. H_1 : H_0 is not true.

Breusch-Godfrey Serial Correlation LM Test (Durbin-Watson is not appropriate when lagged dependent variable is included in a model) :

 $(T-1)*R^2=37*0.0208=0.770865 < F* \rightarrow We \text{ do not reject } H_0.$

(4 marks)

6. A model of wages is specified for males as:

$$\ln(\mathbf{w}_i) = \beta_1 + \beta_2 exp_i + \beta_3 expsq_i + \beta_4 educ_i + \beta_5 M_i + \beta_6 M R_i + \varepsilon_i + \varepsilon_i$$
(1)

where w = gross hourly wages, exp(expsq) = years of work experience (squared) and educ = numbers of year of full education; M = 1 if married, 0 otherwise, and R = 1 if lives in a rural area, 0 otherwise.

- a) You are worried about the effect of an omitted variable *ability* (unobserved heterogeneity). What effect might the omitted relevant variable *ability* have on the OLS estimate of the coefficient on *educ* in (1)?
- Presentation 4 / Slides 5-9 and 22-29

OLS estimator is biased (upward) and inconsistent.

(2 marks)

- b) Why is there no dummy variable for male respondents that live in city areas?
- Presentation 2 / Slide 38

In order to avoid the "dummy variable trap"

(2 marks)

c) The data set includes a variable for the IQ (Intelligent Quotient) score, which can serve as a proxy for *ability*. How will including the IQ variable in (1), which is then estimated by OLS, change your coefficient estimates in (1)?

Presentation 4 / Slides 5-9 and 22-29

The OLS estimator on education will decrease.

(2 marks)

- d) Instead of estimating the model outlined in (c) by OLS you have decided to estimate equation (1) using IV estimation and you believe you have two potential instruments for educ: (i) *IQ score*, and (ii) *education level of siblings*. Evaluate each of these instruments on the ground of instrument relevance and instruments exogeneity.
- Presentation 4 / Slides 16-21

The instrumental variables estimator is a consistent estimator for β_2 provided **the instruments are** valid

......

- This requires that they are both
 - 1) Exogenous, i.e., E{ $\varepsilon_t z_t$ } = 0

and

2) *Relevant*, i.e., $\operatorname{cov}\{x_t, z_t\} \neq 0$.

(2 marks)

- 3) What, if anything, are key differences between OLS estimation as outlined in (c) and IV estimation as outlined in (d)?
- Presentation 4 / Slides 5-9 and 16-29

OLS estimator is inconsistent while IV is consistent.

(2 marks)

4) Using two instruments suggested in (d), carefully explain how you might go about undertaking a test of (i) instrument relevance, and (ii) instrument exogeneity.

(i)

• Presentation 4 / Slide 48

Briefly explain the idea of Stock-Watson (optionally Stock-Yogo test, too).

(ii)

• Presentation 4 / Slides 49-53

Briefly explain the idea of J-test.

(4 marks)