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An introduction to linear regression

• Two of the cornerstones of econometrics:

- Linear regression model

- Ordinary least squares (OLS)



Simple and Multiple Regression Model 
(Verbeek, Chapters 1-3)

1) Introduction to regression: the classical linear regression model (CLRM)

2) The ordinary least square (OLS) method of estimation

3) The assumptions of the CLRM

4) Properties of the OLS estimator

5) The overall goodness-of-fit 

6) Hypothesis testing and confidence intervals

7) How to estimate a regressions in EViews (Regression; Diagnostics)



The linear regression model (simple)

• Way to examining the nature and form of the relationship among two 
or more variables

• Important issue: direction of causation between two variables

• In the case of two variables, population regression equation is: 

                                         

                                           Y=E 𝑌 + ε = 𝛽1 + 𝛽2X +𝜀

where E(Yi) denotes the average value of Yi for given Xi ; 𝛽1 and 𝛽2  are 
unknown population parameters; 𝜀 is an error term or disturbance 
term. 



Independent vs. Dependent Variables

• Y in the model
• Dependent variable
• Response variable
• Explained variable
• Predicted variable
• Regressand

• X in the model
• Independent variable: Meaning of ‘independent’
• Explanatory variable
• Regressor
• Covariate variable
• Predictor variable



Reasons why disturbance term exist

1) Aggregation of variables (to avoid having too many variables)

2) Omission of explanatory variables and functional misspecification

3)  Unpredictability of human behavior

4)  Measurement error



Sample data: Scatter plot of Y on X
(Data source: AH (2021))
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Sample regression equation
• We are estimating population regression function based on sample information

(i=1,2,..., N):

• This give us the following relationship – fitted straight line: 
         

or an actual value of Y can be written as a sum of predicted value of y and residual:
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Population vs sample regression equation



Sample data: Scatter plot of Y on X 
(with fitted line and observation points)
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Table of OLS estimates of consumption function 

Dependent Variable: Y

Method: Least Squares

Date: 12/05/21   Time: 21:37

Sample: 1 20

Included observations: 20

Variable Coefficient Std. Error t-Statistic Prob.  

C 15.11641 6.565638 2.302352 0.0335

X 0.610889 0.038837 15.72951 0.0000

R-squared 0.932182     Mean dependent var 115.5160

Adjusted R-squared 0.928415     S.D. dependent var 25.71292

S.E. of regression 6.879603     Akaike info criterion 6.789639

Sum squared resid 851.9210     Schwarz criterion 6.889212

Log likelihood -65.89639     Hannan-Quinn criter. 6.809076

F-statistic 247.4176     Durbin-Watson stat 2.283770

Prob(F-statistic) 0.000000



Measures Covariation

Predictor: con.= 15.12 + 0.61 dis. income

= =

= 

xy

xy

x y

y

x

Cov(x,y)
b = 

Var(x)

Note the numerator of b is

the covariance of x and y.

If Cov(x,y) = 0, then b = 0.

Also, since the correlation

sCov(x,y)
is r ,

s sVar(x)Var(y)

s
b Correlation of x and y.

s
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Causality?

Disp. income= -11.92 + 1.53 consumption

Correlation = 0.96 (!)
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Ordinary Least Square (OLS)Estimator

• Method based on following criterion - chose the sample 
regression function in such a way that sum of the squared 
residuals is as small as possible (i.e., is minimized)

• Most popular technique in uncomplicated application of 
regression analysis

• The OLS estimates follow some numerical and statistical 
properties (such as unbiasedness and efficiency) - we will 
discuses them latter



Normal Equations
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(The covariance of x and the residuals is zero)

• It is easy to verify that second-order conditions for a minimum are met 



OLS estimators in simple CLRM

෢𝛽2 = 𝑏2 =
σ𝑖=1

𝑁 𝑥𝑖𝑦𝑖

σ𝑖=1
𝑁 𝑥𝑖

2

෢𝛽1 = 𝑏1 = 𝑦 − 𝑏1𝑥



The classical linear regression model (multiple)

• Economists are usually interested in following:

𝑦𝑖=𝛽1 + 𝛽2𝑥𝑖2 + ⋯ + 𝛽𝐾𝑥𝑖𝐾+𝜀𝑖  

or in matrix notation: 

𝑦 = 𝑋𝛽 + 𝜀, 

where y and ε are N-dimensional vectors and X is of dimension N x K. 

• The OLS estimator for β is given by: 

       b = ( X’ X )-1 (X’y)



Matrix notation

• We define column vectors of N observations on y and the K  
explanatory variables (X), and introduce the notation:

y = ൦ ൪

𝑦1

𝑦2

⋯
𝑦𝑁

=

1 𝑥12 ⋯ 𝑥1𝐾

1 𝑥22 ⋯ 𝑥2𝐾

⋮ ⋮ ⋮ ⋮
1 𝑥𝑁2 … 𝑥𝑁𝐾

×

𝛽1

𝛽2

⋮
𝛽𝐾

+

𝜀1

𝜀2

⋮
𝜀𝑁

y =  Xβ +  ε

• (X’X) is invertible - The assumption means that the rank of the 
matrix X is K. No linear dependencies => FULL COLUMN RANK  of 
the matrix X (topic of perfect/exact multicollinearity)
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Ordinary Least Squares

By construction, OLS produces the best linear approximation of y 

from x2 to xK and a constant.  However, without additional assumptions, 

this approximation has limited value (we have not used any economic or

statistical theory so far) :

• the coefficients do not have an economic interpretation

• we cannot make statistical statements about these coefficients

• the approximation is valid within a given set of observations only

• the linear relationship has no general validity outside the current set of 
values (e.g., in the future or for units not in the sample)
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The linear regression model

• We now start with a linear relationship between y and X1≡1 (a

    constant), X2 to XK, which we assume to be generally valid

• We write: yi = xi‘β + εi    

• The model is a statistical model and has an “error term”. The error 
term εi contains all influences that are not included explicitly in the 
model

• The unknown coefficients k have a meaning and measure how we 
expect Y to change if Xk changes (and all other x values remain the 
same)

• As a result, OLS produces an estimator for the unknown population 
parameter vector β
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Interpreting the linear model

• The coefficient βk measures the expected change in yi if xik 
changes by one unit (marginal effect), but all other variables in 
xi do not change. That is,

• The statement that the other variables in xi do not change is a 
ceteris paribus condition

• In a multiple regression model, single coefficients can only be 
interpreted under a ceteris paribus condition. Thus, (strictly 
speaking) can only be interpreted if we know which other 
variables are included
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About ceteris paribus

• If we are interested in the relationship between yi 
and xik the other variables in xi act as control 
variables

• Sometimes, ceteris paribus is hard to maintain

• For example, what is the impact of age upon a 
person’s wage, keeping years of experience fixed?
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About ceteris paribus (II)

• Sometimes, ceteris paribus is impossible, for example if the 
model includes both age and age-squared

• Example: model includes 

 then the marginal effect of a changing age (ceteris paribus) is

 

 Consequently, the marginal effect depends upon age



Functional Form: Quadratic

• Y = b1 + b2X + b2X2 + e

• dE[Y|X]/dX = b2 + 2b3X

• Diminishing marginal effect (easily seen on 
graph)



Functional Form: Quadratic (II)



Non-linear models

Consumption = f (Disp. Income)
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Transformation to linear model

• Baseline model: 

by taking logarithms becomes: 

• Now interpretation of β is elasticity:

•
𝜕𝑙𝑛𝑌

𝜕𝑙𝑛𝑋
=

% 𝑐ℎ𝑎𝑛𝑔𝑒 𝑌

% 𝑐ℎ𝑎𝑛𝑔𝑒 𝑋
= 𝐸𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦 𝑜𝑓 𝑌 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑋

,XY 0

=

   .

X

Xlnln

Y

Yln
*

*

0

*

0 +



=
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OLS estimator and OLS estimates
• An estimator is a random variable:

- because the sample is randomly drawn from a larger population

- because the data are generated by some random process (each 𝜀𝑖 is 
random drawing from the population distribution, independent from the other 
error terms)

• A new sample means a new estimate (new set of N observations 
(𝑦𝑖 , 𝑥𝑖))

• When we consider the different estimates for many different samples, 
we obtain the sampling distribution of the OLS estimator (see Figure in 
the next slide)

• We evaluate the “quality” of the OLS estimator (and a given OLS 
estimate) by the properties of the sampling distribution
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Figure of sampling distribution: 
histogram and normal density
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OLS estimator and OLS estimates (II)

• The estimator is a vector of random variables

• The estimate is a vector of numbers 

• While given sample only produces a single estimate, we evaluate a 
properties of the underlaying estimator  



b is a statistic

• Random because it is a sum of the ’s

• It has a distribution, like any sample statistic
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Error terms and residuals

• Note that we write:

    yi = xi‘β + εi    

and

  yi = xi‘b + ei             

• We call εi the error term and ei the residual

• The error term is unobserved, the residual is constructed (after the  
estimation) using the estimate b



Error terms and residuals (II)

• By virtue of the first order conditions of OLS, the residual is mean zero and 
uncorrelated with xi:

                  1)

                  2) 

• This does not necessarily hold for the error term

෍

𝑖=1

𝑁

𝑒𝑖 = 0

෍

𝑖=1

𝑁

𝑥𝑖𝑒𝑖 = 0
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Is OLS a good estimator?

• The answer to this question depends upon the assumptions we are willing to 
make

• The most standard and most convenient ones are given by the Gauss-Markov 
assumptions (assumption made about 𝜀𝑖 and 𝑥𝑖)

• Note that these assumptions are very strong and often not satisfied

• Under the Gauss-Markov assumptions, the OLS estimator has nice properties

• Later, we shall discuss how essential the Gauss-Markov assumptions are and how 
they can be relaxed
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The Gauss-Markov assumptions

(A1) Error terms have mean zero: E{εi}=0

(A2) All error terms are independent of all X variables (exogeneity):

         {ε1 ,… εN} is independent of {x1,… xN}

(A3) All error terms have the same variance (homoskedasticity): 

                                                       V{εi} = σ2

(A4) The error terms are mutually uncorrelated (no autocorrelation):

cov{εi,,εj} = 0,  i ≠ j

• These assumptions imply that E{ yi | xi } = xi‘β

• Under (A2) we can treat the explanatory variables as fixed 
(deterministic)
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Estimator properties

• Under assumptions (A1) - (A4):
1. The OLS estimator is unbiased. That is, E{b} = β

• Under assumptions (A1), A(3) and (A4):
2. Error terms are uncorrelated drawings from a distribution with 
expectations zero and constant variances 𝜎2

• Under assumptions (A1), (A2), (A3) and (A4): 
3. The variance of the OLS estimator is given by:

                                            V{b} = σ2( Σi xi xi’ )
-1   

4. The OLS estimator is BLUE: best linear unbiased estimator for β



Unbiased and biased estimator 



Relatively efficient and inefficient estimator



Mean Square Error criteria
(MSE = Bias^2 + Variance)
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Estimator properties (II)

• We estimate the variance of the error term σ2 by the sampling variance 
of the residuals

• However, because K parameters were chosen to minimize the residual 
sum of squares, we employ a degrees of freedom correction:

                                   s2 = (N-K) -1 Σi ei
2 

  

• Under assumptions (A1)-(A4), s2 is unbiased for σ2

• We estimate the variance (covariance matrix) of b by :
                                     
                                               ෠𝑉 𝑏 = s2( Σi xi xi’ )

-1   
 
• The square root of the kth diagonal element is the standard error of bk 
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Estimator properties (III)
• A convenient fifth assumption is that all error terms have a 

normal distribution. We specify:
    
(A5):  εi ~ NID(0, σ2)

which is shorthand for: all εi are independent drawings from a 
normal distribution with mean 0 and variance σ2. (“normally and 
independently distributed”)

• (A5) replaces (A1)+(A3)+(A4)

• Under assumptions (A2) + (A5):

4. The OLS estimator b has a normal distribution with mean β and 
covariance matrix V{b} = σ2( Σi xi xi’ )

-1
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Example: individual wages

• Consider a sample of N=526 individuals (252 females). We observe 
wage rates (per hour), gender, experience and years of schooling. 

• First model: explain wage from a female dummy (= 1 if female, 0 if 
male). That is: 

                                         wagei = β1 + β2 femalei + εi  

• The interpretation is: the expected wage of a person, given his or her 
gender is β1 + β2 femalei 

• That is, the expected wage of an arbitrary female is β1 + β2, for an

    arbitrary male it is β1



Dummy Variable

• D = 0 in one case and 1 in the other

• Y = b1  +  b2D + e (change in level – constant term)

• When D = 0, E[Y|X] = b1  

• When D = 1, E[Y|X] = b1  +  b2D 



Set of Dummy Variables

• Usually, Z = Type = 1,2,…,K (e.g., in wage1.wf1: west, 
south, north-central and east US)

• Y = b1  + b2 X + d1 if Type=1
                       + d2 if Type=2
                        …
                       + dK if Type=K



Set of Dummy Variables (II)

• Complete set of dummy variables divides the sample into 
groups

• Fit the regression with “group” effects

• Need to drop one (anyone) of the variables to compute 
the regression.  (Avoid the “dummy variable trap”)

• Interaction effect between two dummy variables (e.g., 
females employed in services) or dummy and numerical 
variables (change in marginal effect)
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Table of OLS estimates wage equation (I)

Dependent Variable: LWAGE

Method: Least Squares

Date: 12/05/21   Time: 20:19

Sample: 1 526

Included observations: 526

Variable Coefficient Std. Error t-Statistic Prob.  

C 1.813570 0.029814 60.83028 0.0000

FEMALE -0.397217 0.043073 -9.221915 0.0000

R-squared 0.139635     Mean dependent var 1.623268

Adjusted R-squared 0.137993     S.D. dependent var 0.531538

S.E. of regression 0.493503     Akaike info criterion 1.429220

Sum squared resid 127.6177     Schwarz criterion 1.445438

Log likelihood -373.8848     Hannan-Quinn criter. 1.435570

F-statistic 85.04372     Durbin-Watson stat 1.825492

Prob(F-statistic) 0.000000





Regression Arithmetic

( )

( ) ( )N N

ˆ

ˆ

ˆ

i i

i i i i

22 N 2

i=1 i i=1 i i=1 i

y                 = y +e

y - y           = y - y +e

A few algebra steps later...

Σ y - y =   Σ y - y   +  Σ e

TOTAL           LARGE??       small??

TOTAL       =   Regression  +  Residual

This is the analysis of (the) variance (of y); ANOVA



Fit of the Equation to the Data

( ) ( )ˆ
22N N N 2

i=1 i i=1 i i=1 i

The original question about the model fit to the data :

Σ y - y =   Σ y - y   +  Σ e

TOTAL           LARGE??       small??

TOTAL       =   Regression  +  Residual

TOTAL SS
     =  

R

TOTAL

egr

 SS

ession SS

TOTAL SS

Proportion Expl

Residual S

ained

  +  

1   =   + 

S

TOTAL SS

Proportion Unexplained



Analysis of Variance Table

Source

Degrees 

of 

Freedom

Sum of 

   Squares
Mean Square         F Ratio P Value

Regression      1 2P[z>√F]*

Residual      N-2            

Total      N-1            

ˆN 2

i=1 iΣ (y - y)

N 2

i=1 iΣ e

N 2

i=1 iΣ (y - y)

ˆN 2

i=1 iΣ (y - y)

1

N 2

i=1 iΣ e

N- 2

N 2

i=1 iΣ (y - y)

N-1

( )
( )

ˆ /

/

N 2

i=1 i

N 2

i=1 i

Σ (y - y) 1

Σ e (N- 2)



Explained Variation

• The proportion of variation “explained” by the 
regression is called R-squared (R2)

• It is also called the Coefficient of Determination

• (It is the square of something – to be shown later)



ANOVA Table

Source

Degrees 

of 

Freedom

Sum of 

   Squares
Mean Square         F Ratio P Value

Regression      1 2P[z>√F]*

Residual      N-2            

Total      N-1            

ˆN 2

i=1 iΣ (y - y)

N 2

i=1 iΣ e

N 2

i=1 iΣ (y - y)

ˆN 2

i=1 iΣ (y - y)

1

N 2

i=1 iΣ e

N- 2

N 2

i=1 iΣ (y - y)

N-1

( )
( )

ˆ /

/

N 2

i=1 i

N 2

i=1 i

Σ (y - y) 1

Σ e (N- 2)

( )

( )

ˆ



2N

i2 i=1

N 2

ii=1

y - y
R =

y - y
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Goodness-of-fit

• The quality of the linear approximation offered by the model can 
be measured by the R2

• The R2 indicates the proportion of the variance in y that can be 
explained by the linear combination of x variables

• In formula:

• If the model contains an intercept (as usual), it holds that
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Goodness-of-fit (II)

• Accordingly, we can also write

• If the model does not contain an intercept, these two expressions 
are not equivalent. (Statistical software may use either definition)

• It is also possible to define the R2 as the squared correlation 
coefficient between observed and fitted values of y:



R2 = 0 and R2 = 1

                ty

   y

         tx

                ty

         tx



Correlation Coefficient

−  



 

xy

N
1

i iN-1 i=1

N N2 21 1
i iN-1 N-1i=1 i=1

xy

r   =  Correlation(x,y) 

Sample Cov[x,y]
= 

[Sample Standard deviation (x)] [Sample standard deviation (y)]

(x -x)(y -y)
= 

(x -x) (y -y)

1  r   1



R-Squared is rxy
2 (in simple model)

• R-squared is the square of the correlation between yi and 
the predicted yi which is b1 + b2xi

• The correlation between yi and (b1+b2xi) is the same as 
the correlation between yi and xi.

• Therefore,….

• A regression with a high R2 predicts yi well
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Goodness-of-fit (II)

• In general: 0  R2  1.

• There is no general rule to say that an R2 is high or low. This depends upon 
the particular context

• R2s of 0 or 1 are suspicious (close to 1  - “nonsense regressions” in time series 
analysis)

• R2s cannot be compared if y is different

• R2 will never decrease if a variable is added. Therefore, we define adjusted R2 

as:

 (has a penalty for larger K) 



Notes About Adjusted R2

2 2 2 2

2

2

(1)  Adjusted R  is denoted R . R  is less than R .

(2)  R  is not the square of R.  It is not the square of anything.

      Adjusted R squared is just a name, not a formula.

(3)  Adjusting R  makes no s

2

2

ense when there is only one variable

      in the model. You should pay no attention to R  when K = 1.

(4)  R  can be less than zero!  See point (2).
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Criteria for model selection

• Maximum of adjusted R2 

• Minimum of S.E. of regression (s): 

• Minimum of information criterion function (IC):

                           IC(K) = ln(s2) + g(K/N)

- AIC –Akaike IC (g=2)

- SIC – Schwarz Bayesian IC (g=ln(n))

- HQC – Hannan and Quin IC (g=2lnln(n))

• Finite Prediction Error (FPE)

𝑠2 = 1 − 𝑅
_

2
σ 𝑦𝑖

2

𝑁 − 1



D. Hendry (Economica, 47, 1980): 
Econometrics-Alchemy or Science? 



Nonsense regression 



Nonsense regression (II)



Nonsense regression(III); 
C is simply cumulative rainfall in the UK!
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Table of OLS estimates wage equation (I)

Dependent Variable: LWAGE

Method: Least Squares

Date: 12/05/21   Time: 20:19

Sample: 1 526

Included observations: 526

Variable Coefficient Std. Error t-Statistic Prob.  

C 1.813570 0.029814 60.83028 0.0000

FEMALE -0.397217 0.043073 -9.221915 0.0000

R-squared 0.139635 Mean dependent var 1.623268

Adjusted R-squared 0.137993 S.D. dependent var 0.531538

S.E. of regression 0.493503 Akaike info criterion 1.429220

Sum squared resid 127.6177 Schwarz criterion 1.445438

Log likelihood -373.8848 Hannan-Quinn criter. 1.435570

F-statistic 85.04372 Durbin-Watson stat 1.825492

Prob(F-statistic) 0.000000
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Table of OLS estimates wage equation (II)

Dependent Variable: LWAGE

Method: Least Squares

Date: 11/05/23   Time: 18:00

Sample: 1 526

Included observations: 526

Variable Coefficient Std. Error t-Statistic Prob.  

C 0.826269 0.094054 8.785044 0.0000

EDUC 0.077203 0.007047 10.95525 0.0000

FEMALE -0.360865 0.039024 -9.247156 0.0000

R-squared 0.300220 Mean dependent var 1.623268

Adjusted R-squared 0.297544 S.D. dependent var 0.531538

S.E. of regression 0.445496 Akaike info criterion 1.226432

Sum squared resid 103.7982 Schwarz criterion 1.250758

Log likelihood -319.5515 Hannan-Quinn criter. 1.235957

F-statistic 112.1887 Durbin-Watson stat 1.813768

Prob(F-statistic) 0.000000



Relevant theoretical distributions for our 
course

• There are only four distributions, all of them continuous, that are 
going to be of importance to us: 

1) Normal distribution

2) t-distribution

3) F - distribution

4) Chi-squared (c2) distribution



Normal distribution

( )

2

2

1

2

1 






 −
−

= 





X

eXf



Normal distribution
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Standard normal distribution
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An important special case is the standard normal distribution, where  = 
0 and  = 1.  This is shown in the figure.



χ2-distribution

• First, we define Chi-squared distribution as follows. If Z1, 
Z2, …., Zn is a set of independent standard normal 
variables, it hold that:

 𝑍1
2+𝑍2

2+…+𝑍𝑛
2=σ𝑖=1

𝑛 𝑍𝑖
2,

 has a Chi-squared distribution with n degrees of freedom.

• We denote σ𝑖=1
𝑛 𝑍𝑖

2 ⁓χ𝑛
2 , and distribution is with 

expected value equal to n and variance equal to 2n



Chi-square (χ2) Distribution  



Student t - distribution
• Next, we consider t - distribution (or Student distribution). 

• If Z0 has a standard normal distribution, Z0⁓N(0, 1), and σ𝑖=1
𝑛 𝑍𝑖

2 ⁓χ𝑛
2 , and 

the distributions are independent, the ratio:

                                                       t=
𝑍0

1

𝑛
σ𝑖=1

𝑛 𝑍𝑖
2,

has a t- distribution with n degrees of freedom. Like standard normal, t 
distribution is symmetric around zero , but has fatter tails, particularly for 
small n.

• t-distribution has expected value of 0, and variance of  n/n-2.                       



t - distribution



F – distribution 

• If U ⁓ χ𝑚
2  and V⁓χ𝑛

2 , and U and V are independent, it 
follows that ratio:

𝐹 =
ൗ𝑈

𝑚

ൗ𝑉
𝑛

has F distribution with m (d1) and n (d2) degrees of freedom in the 
numerator and denominator respectively ( we denote 𝐹𝑛

𝑚). 

• The F distribution is thus the ratio of two independent Chi-squared 
distributed variables, divided by their respective degrees of freedom. 



F - distribution
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Tests based on the OLS estimator

• Often, economic theory implies certain restrictions upon our 
coefficients. For example, k = 0

• We can check whether our estimates deviate “significantly” 
from these restrictions by means of a statistical test

• If they do, we will reject the null hypothesis that these 
restrictions are true

• To perform a test, we need a test statistic. A test statistic is 
something we can compute from our sample and has a known 
distribution if the null hypothesis is true
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Tests involving one parameter
• The most common test is the t-test. It can be used to test a single 

restriction

• Suppose the null hypothesis is k = q for some given value q. 

• Consider the test statistic:  t = (bk - q) / se(bk).

• If the null hypothesis is true, and under the Gauss-Markov 
assumptions (A1)-(A4) + normality (A5), t has a t-distribution with N-
K degrees of freedom

• We will reject the null hypothesis If the absolute value of t is “too 
large”



Confidence interval for β
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Tests involving one parameter (II)

• We consider values “too large” if they are unlikely to come from a t-
distribution

• If we want to test with 95% confidence, we reject the null hypothesis if 
the absolute value of t is larger than (approximately) 2 

• The ratio t = bk / se(bk) is the t-value (or t-ratio) and is routinely 
supplied by any regression package

•  It can be used to test the hypothesis that the true coefficient k is equal 
to 0
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Tests involving one parameter (III)

• If assumption (A5) does not hold, but the other assumptions (A1)-(A4) hold, 
the t-distribution only holds approximately

• We can also state that under (A1)-(A4), it holds that 

                                             t = (bk - q) / se(bk)

(under the null hypothesis that k = q) has approximately a standard normal 

distribution, denoted N(0,1)

• The approximation error becomes smaller if the sample size N becomes 
larger. We refer to this as asymptotic theory as N goes to infinity (N→∞) 
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Tests involving more parameters

• Suppose we want to test whether J coefficients are jointly equal to zero. 

• The easiest way to obtain a test statistic for this is to estimate the 
model twice: 

1) once without the restrictions, 

2) once with the restrictions imposed, i.e., with omitting the 
corresponding x variables. 

• Let the R2s of the two models be given by R2
1 and R2

0 , respectively. Note 
that R2

1  R2
0
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Tests involving more parameters (II)
• The restrictions are unlikely to be valid if the difference between the 

two R2s is “large”

• A test statistic can be computed as:

 

• Under the null hypothesis (and assumptions (A1)-(A5)), F has an F-
distribution with J and N-K degrees of freedom

• We reject if F is too large

• For example, with N-K=60 and J=3, we reject if F > 2.76 (95% confidence)



85

Tests involving more parameters (III)

• Suppose that relevant hypothesis are:

• Consider the test statistic:

                                                   𝐹𝑁−𝐾
𝐾−1=

𝑅2/ 𝐾−1

1−𝑅2 /(𝑁−𝐾)

• We will reject the null hypothesis If the value of F is “too large” (F > 𝐹𝑁−𝐾
𝐾−1; 

95% confidence)

𝐻0: 𝑅2 = 0 ⇔ 𝐻0: 𝛽2=…= 𝛽𝐾=0

𝐻1: 𝐻0 𝑖𝑠 𝑛𝑜𝑡 𝑡𝑟𝑢𝑒 ⇔ 𝐻1: 𝑅2 ≠ 0
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Table of OLS estimates wage equation (I)

Dependent Variable: LWAGE

Method: Least Squares

Date: 12/05/21   Time: 20:19

Sample: 1 526

Included observations: 526

Variable Coefficient Std. Error t-Statistic Prob.  

C 1.813570 0.029814 60.83028 0.0000

FEMALE -0.397217 0.043073 -9.221915 0.0000

R-squared 0.139635 Mean dependent var 1.623268

Adjusted R-squared 0.137993 S.D. dependent var 0.531538

S.E. of regression 0.493503 Akaike info criterion 1.429220

Sum squared resid 127.6177 Schwarz criterion 1.445438

Log likelihood -373.8848 Hannan-Quinn criter. 1.435570

F-statistic 85.04372 Durbin-Watson stat 1.825492

Prob(F-statistic) 0.000000
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Do females earn less than males?

• We would like to test the null hypothesis H0: β2=0

• Our test statistic is:

 

                t2 = (b2 – 0)/se(b2) = -0.3972/0.043 = −9.22  

• Since this is much larger than 2, we reject the null hypothesis that the 
average wage rate (in the population) is identical for males and 
females

• Note that R2 = 0.1396, so that the simple model explains about 14% 
of the differences in individual wages

• Data source: http://fmwww.bc.edu/ecp/data/wooldridge/datasets.list.html
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Extending the model
• Why?

• Wage differentials between males and females may be explainable 
by other factors (e.g., education or experience).

• Consider the more general model:

 𝑤𝑎𝑔𝑒𝑖= 𝛽1 + 𝛽2 𝑓𝑒𝑚𝑎𝑙𝑒𝑖  + 𝛽3 𝑒𝑑𝑢𝑐𝑖 + 𝛽4 𝑒𝑥𝑝𝑒𝑟𝑖 + ε𝑖 

• Now, β2 measures the difference in expected wage between a 
male and a female with the same years of schooling (educ) and 
experience 

• The latter statement is a ceteris paribus condition
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Table of OLS estimates wage equation (III)

Dependent Variable: LWAGE

Method: Least Squares

Date: 12/05/21   Time: 21:44

Sample: 1 526

Included observations: 526

Variable Coefficient Std. Error t-Statistic Prob.  

C 0.480836 0.105016 4.578678 0.0000

FEMALE -0.343597 0.037667 -9.122002 0.0000

EDUC 0.091290 0.007123 12.81591 0.0000

EXPER 0.009414 0.001449 6.495556 0.0000

R-squared 0.352552 Mean dependent var 1.623268

Adjusted R-squared 0.348831 S.D. dependent var 0.531538

S.E. of regression 0.428925 Akaike info criterion 1.152506

Sum squared resid 96.03584 Schwarz criterion 1.184942

Log likelihood -299.1092 Hannan-Quinn criter. 1.165206

F-statistic 94.74734 Durbin-Watson stat 1.786623

Prob(F-statistic) 0.000000
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The RESET test

• A simple test on the functional form of the model. It is based

on a simply auxiliary regression

• RESET = regression equation specification error test (Ramsey, 

1969). 

• Construct the fitted value from the model and test whether 
nonlinear functions of it help explaining yi. Auxiliary regression:

where                       (fitted value). Often Q=2

RESET test = F-test on Q-1 restrictions (α’s are 0)

(Note: auxiliary regression is for testing purposes only.) 
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The RESET test-  wage equation (II)

Unrestricted Test Equation:

Dependent Variable: LWAGE

Method: Least Squares

Date: 12/07/21   Time: 10:58

Sample: 1 526

Included observations: 526

Variable Coefficient Std. Error t-Statistic Prob.  

C 0.794642 0.168049 4.728641 0.0000

EDUC -0.258297 0.135101 -1.911882 0.0564

EXPER -0.026999 0.014126 -1.911335 0.0565

FEMALE 0.998531 0.519108 1.923550 0.0550

FITTED^2 2.128346 1.002903 2.122186 0.0343

FITTED^3 -0.370887 0.219477 -1.689868 0.0917

R-squared 0.370324 Mean dependent var 1.623268

Adjusted R-squared 0.364270 S.D. dependent var 0.531538

S.E. of regression 0.423810 Akaike info criterion 1.132277

Sum squared resid 93.39963 Schwarz criterion 1.180931

Log likelihood -291.7888 Hannan-Quinn criter. 1.151327

F-statistic 61.16441 Durbin-Watson stat 1.790640

Prob(F-statistic) 0.000000



Table of OLS estimates wage equation (IV)

Dependent Variable: LWAGE

Method: Least Squares

Date: 12/07/21   Time: 11:02

Sample: 1 526

Included observations: 526

Variable Coefficient Std. Error t-Statistic Prob.  

C 0.390483 0.102210 3.820413 0.0001

EDUC 0.084136 0.006957 12.09407 0.0000

EXPER 0.038910 0.004824 8.066682 0.0000

FEMALE -0.337187 0.036321 -9.283424 0.0000

EXPERSQ -0.000686 0.000107 -6.388842 0.0000

R-squared 0.399590 Mean dependent var 1.623268

Adjusted R-squared 0.394981 S.D. dependent var 0.531538

S.E. of regression 0.413446 Akaike info criterion 1.080882

Sum squared resid 89.05862 Schwarz criterion 1.121427

Log likelihood -279.2720 Hannan-Quinn criter. 1.096757

F-statistic 86.68521 Durbin-Watson stat 1.775544

Prob(F-statistic) 0.000000
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The RESET test-  wage equation (III)

Unrestricted Test Equation:

Dependent Variable: LWAGE

Method: Least Squares

Date: 12/07/21   Time: 11:04

Sample: 1 526

Included observations: 526

Variable Coefficient Std. Error t-Statistic Prob.  

C 1.057290 0.214927 4.919302 0.0000

EDUC -0.179859 0.140267 -1.282264 0.2003

EXPER -0.083726 0.065923 -1.270056 0.2046

FEMALE 0.744732 0.573537 1.298490 0.1947

EXPERSQ 0.001471 0.001165 1.261825 0.2076

FITTED^2 1.584461 1.093791 1.448596 0.1481

FITTED^3 -0.239763 0.230758 -1.039025 0.2993

R-squared 0.416802 Mean dependent var 1.623268

Adjusted R-squared 0.410060 S.D. dependent var 0.531538

S.E. of regression 0.408262 Akaike info criterion 1.059401

Sum squared resid 86.50561 Schwarz criterion 1.116164

Log likelihood -271.6225 Hannan-Quinn criter. 1.081626

F-statistic 61.82012 Durbin-Watson stat 1.768058

Prob(F-statistic) 0.000000
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The RESET test

• Thus, we cannot reject the current specification. However, 
this does not necessarily mean that other variables are 
irrelevant (i.e., have no impact on the house prices) 

• In fact, we may want to include other characteristics too



Statistical measures used to describe 
distribution: skewness and kurtosis

• Skewness is a measure of the asymmetry of a distribution. A 
distribution is asymmetrical when its left and right side are not mirror 
images. A distribution can have right (or positive), left (or negative), 
or zero skewness, α3:N(0, 6/n)

• Kurtosis is a measure of “taildness” of a probability distribution. 
Whereas skewness differentiates extreme values in one versus the 
other tail, kurtosis measures extreme values in either tail, α4:N(3, 
24/n)

• Kurtosis is a measure of whether the data are heavy-tailed (fat-
tailed) or light-tailed (thin-tailed) relative to a normal distribution



Testing for Normality: Jarque-Bera (JB) test

• Test statistic: 

• Relevant hypothesis are:

H0: sample data matching a normal distribution

H1: H0 is not true 

• We will reject the null hypothesis If the value of JB is “too large” ( the 
chi-squared approximation for the JB statistic's distribution is only used 
for large sample sizes). 

• Note: In Verbeek textbook - Ch.6 pp. 202-203
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Ceteris Paribus in Wage example

• Log of wages: 

       lwage = f(gender /female, education and experience)

• Returns to education:

𝛽3 = one additional year of schooling increase wage for 
9.1% when holding experience and gender constant

• How do you do that in the real world?
• The “percentage changes”
• How to change years of schooling and hold two other 

explanatory variables constant?
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Size, power and p-values

• Type I error: we reject the null hypothesis, while it is actually true

• The probability of a type I error (the size α of the test) is directly 
controllable by the researcher by choosing the confidence level 
(e.g., a confidence level of 95% corresponds with a size of 5%)

• Type II error: we do not reject the null hypothesis while it is false 
(alternative is true)

• The reverse probability, that is, the probability of rejecting the null 
when it is false, is known the power of a test. We would like the 
power of a test to be high
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Size, power and p-values (II)

• By reducing the size of a test to e.g., 1%, the probability of 
rejecting the null hypothesis will decrease, even if it is false

• Thus, a lower probability of a type I error will imply a higher 
probability of a type II error (There is a trade off between the two 
error types)

• In general, larger samples imply better power properties

•  Accordingly, in large samples we may prefer to work with a size of 
1% rather than the “standard” 5%
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Size, power and p-values (III)

• Note that we say: 

“We reject the null hypothesis” (at the 95% confidence level) or

“We do not reject the null hypothesis”

• We typically do not say:

“We accept the null hypothesis”

• Why?

Two mutually exclusive hypotheses (e.g., β2 = 0 and β2 = 0.01) may not be

rejected by the data, but it is silly to accept both hypotheses.(Sometimes, 

tests are just not very powerful)



101

p-values 

• Final probability that plays a role in statistical test 

• The p-value denotes the marginal significance level for which the null 
hypothesis is rejected

• If a p-value is smaller than the size α (e.g., 0.05) we reject the null 
hypothesis

• Many modern software packages provide p-values with their tests. 
This allows you to perform the test without checking tables of critical 
values. It also allows you to perform the test without understanding 
what is going on

• Note that a p-value of 0.08 indicates that the null is rejected at the 
10% level but not at the 5% level
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Asymptotic properties of OLS

• If some of the assumptions (A1) to (A5) are violated, the properties of 
the OLS estimator may differ from those reported above

• In many cases, the exact properties are unknown, and we employ 
asymptotic theory

• Asymptotic theory refers to the question what happens if, 
hypothetically, the sample size grows infinitely large. In formula: N→∞

• We use this to approximate the properties of our estimator in a given 
sample (in reality, sample sizes rarely grow)
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Asymptotic properties of OLS (II)
• Under assumptions (A1)-(A4) it holds that b is a consistent estimator for β or “b converges 

in probability to β”:

                                                                    plim b = β, 

provided some regularity condition (A6) is satisfied (asymptotically there is no 

multicollinearity)

• This says that: if N grows, the probability that b differs from β becomes smaller and smaller

• Actually, consistency of b already holds if 

                                                            

                                                                E{εi xi}=0    (A7)

(no correlation between errors and regressors)



This is an example where the bias disappears altogether as the sample size tends to 
infinity.  Estimator that is consistent despite being biased in finite sample.
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Asymptotic properties of OLS (III)
• Further, under assumptions (A1)-(A4) it holds that b is asymptotically 

normal

• This means that in finite samples, b has approximately a normal 
distribution, where the approximation is better if N is large 

• So, we have (approximately): 

(Same result as before, except for “approximately”) 
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Asymptotic properties of OLS (IV)
• Fortunately, it is possible to relax assumption (A2) to 

 xi and εi are independent (A8), without affecting the distributional result  

   (does not rule out the dependence between xi and εi  for i ≠ j)

• Note that (A8)  implies (A7): E{εi xi}=0

• Thus under (A1), (A8), (A3) [homoskedasticity] and (A4) [no serial correlation], 
the OLS estimator is:

▪ Consistent;

▪ Asymptotically normal;

▪ Routinely computed standard errors are (approximately) correct;
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Data problems: Multicollinearity

• In general, there is nothing wrong with including variables in your model 
that are correlated, for example

▪ experience and schooling, 

▪ age and experience, 

▪ inflation rate and nominal interest rate. 

• However, when correlations are high, it becomes hard to identify the 
individual impact of each of the variables

• Multicollinearity is used to describe the situation when an exact or 
approximate linear relationship exists between the explanatory variables 
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Multicollinearity

• The signs of multicollinearity are:

- High standard errors (low t-values)

- Strange signs or magnitudes of coefficients

- Reasonable (or good) R2 or F-statistics

• Multicollinearity has little impact on forecasts/fitted values.

• The variance of bk is inflated if xk  can be approximated by the other 
explanatory variables; see 

 



110

Exact multicollinearity
• Exact multicollinearity arises when an exact linear relationship 

exists between the explanatory variables. For example:

  exper = age – school – 6

  male = 1 – female
Note: Alternative parameterizations 

• In case of exact multicollinearity, the OLS estimator cannot be 
computed. This is because the matrix   Σi xi xi’ is not invertible 

• The natural solution is to drop one explanatory variable (or 
more than one, if necessary). Some programs (e.g., Stata) do 
this automatically, other programs (e.g., Eviews) give an error 
message. [“near collinear matrix”]



Variance Inflation and Multicollinearity

• When variables are highly but not perfectly correlated, 
least squares is difficult to compute accurately (problem of 
that matrix (x’x) is close to being not invertible)

• Variances of least squares slopes become very large

• Variance inflation factors:  For each xk, VIF(k) = 1/[1 – R2(k)] 
where R2(k) is the R2 in the regression of xk on all the other 
x variables in the data matrix

• Values over 10(5) are considered as “high” (rule of thumb)
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and corresponding values for VIFK 

𝑅𝐾
2

0 0.5 0.8 0.9 0.95 0.975 0.99 0.995 0.999

VIFK 1 2 5 10 20 40 100 200 1000

𝑅𝐾
2
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Data problems: Outliers
• In calculating the OLS estimator, some observations may have a 

disproportional impact

• An outlier is an observation that deviates markedly from the 
rest of the sample. Could be due to mistakes or problems in the 
data

• An outlier becomes an influential observation if it has a 
substantial impact on the estimated regression line. (Large 
residuals are penalized more than proportionally.)  See above 
Figure 2.3 (𝛽1 = 3 𝑎𝑛𝑑 𝛽2 = 1; 𝑜𝑢𝑡𝑙𝑖𝑒𝑟:  𝑥 = 6, 𝑦 = 0.5 → slope 
coefficient drops from 0.94 to 0.52, R2 from 0.94 to 0.18)

• Approaches: investigate sensitivity of results, “test” for the 
presence of outliers, use robust estimation methods (e.g., LAD) 



(c) John Wiley and Sons, 2012 114

Impact of outliers



Least Absolute Deviations (LAD)

• Estimation method less sensitive to outliers

• 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 σ𝑖=1
𝑁 𝑦𝑖 − (𝛽1 + 𝛽2𝑥𝑖)

• 𝑆olution is obtained by linear programming (there is 
no closed−form solution to minimizing above)

• Special case of a so-cold quantile regressions (available 
in EViews and Stata)



Least Squares vs. LAD
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